Quick Questions 13 Large Sample Hypothesis Testing

- Complete the following chart and questions.
 - A. Type I error is called <u>alpha</u> error.
 - B. Type II error is called beta error.
 - C. When z calculated from sample data is beyond the critical value (less than for left tail problems and greater than for right tail problems), the null hypothesis is <u>rejected</u>.
 - D. True

E	rror Summary	
Decision Concerning Null Hypothesis	Nature's True State	
	H _o is true	H₀ is false
Accept H _o	Correct	Type II error
Reject H₀	Type I error	Correct

- II. Make these tests using the 5-step approach to hypothesis testing.
 - A. A light bulb warranty states average bulb life is at least 20,000 hours. A sample of 49 bulbs had an average life of 19,000 hours. The population standard deviation is 1,400 hours. Test the warranty claim to the .01 level of significance.
 - 1. $H_0: \mu \ge 20,000 \text{ hours}$ $H_1: \mu < 20,000 \text{ hours}$
 - 2. $\alpha = .01$ (Note: H₁ points to the area of rejection)
 - 3. \bar{x} is the test statistic.
 - The critical value of z for .01 is -2.33.
 If the test Z is beyond -2.33, reject H₀.
 - 5. Apply the decision rule.

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{19,000 - 20,000}{\frac{1,400}{\sqrt{49}}} = \frac{-1,000}{200} = -5.0$$

Reject H₀ because -5.0 is beyond -2.33.

The claim is not substantiated.

- B. Average weekly manufacturing earnings were \$480 and the standard deviation was \$72. A recent sample of 36 resulted in a mean of \$450. The standard deviation has not changed. Test to the .05 level whether average weekly earnings changed.
 - 1. $H_o: \mu = $480 \text{ and } H_1: \mu \neq 480
 - 2. $\alpha = .05$
 - 3. \bar{x} is the test statistic.
 - 4. The critical value of z for $\alpha \div 2 = .05/2 = .025$ is ± 1.96 . If the test Z is beyond ± 1.96 , reject H₀.
 - 5. Apply the decision rule.

$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{450 - 480}{\frac{72}{\sqrt{36}}} = \frac{-30}{12} = -2.50$$

Reject H₀ because -2.50 is beyond -1.96.

Weekly earnings changed.

